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ABSTRACT

This thesis presents the application of EIGENVALUE

SENSITIVITY' ANALYSIS and SINGULAR VALUE ANALYSIS to the

control of a SEA-SKIMMING supersonic missile,in the vertical

plane.

The study is divided in fOur basic parts:

a) The development of the model.

b) EIGENVALUE SENSITIVITY tNALYSIS with respect to the
variation of the aerodynamic parameters of tne
autopilot/airframe of the missile.

c) Analysis of the time response with respect to the
variation of the aerodynamic parameters.

d) Robustness analysis and improvement of the system,
using the SINGULAR VALUE ANALYSIS.

All the analysis is based in results of simulation

programs using the software available at the NAVAL

POSTGRADUATE SCHOOL.
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I. INTRODUCTION

The majority of tactical missiles used against surface

targets are SEA-SKIMMING and fly as close as possible to the

surface of the water in order to make difficult the

detection and reaction of the enemy.

This work addresses the problem of analysing the design

of the altitude control system of a supersonic SEA-SKIMMING

missile in both aspects of SENSITIVITY and ROBUSTNESS, with

respect to the variations of the aerodynamics parameters.

Those variations can develop from uncertainties in the

model as well as from changes in the flight conditions of

the vehicle.

The SENSITIVITY analysis makes it possible to verify,

for a given model which parameters are more important for

the desired flight path.

The ROBUSTNESS analysis has the objective of verifying

if the system could be affected by perturbations or noise

and will be the base on calculations of modified feedback

gains which are capable of producing the desired flight of

the missile despite perturbations.

The contents of the different sections are as following:

Section II presents the model and the state equations of

the system as well as the calculations to complete the chain

of control of the missile, considering the restrictions of

12



the SEA-SKIMMING scenario, where the altitude control system

cannot tolerate any overshoot to avoid that the missile hits

the water.

Section III develops the SENSITIVITY ANALYSIS taking

into consideration the variation of the eigenvalues and time

response of the system of state equations for variations of

the aerodynamic parameters in a range of +25% of the

original value.

In section IV is described the ROBUSTNESS ANALYSIS based

upon the minimum singular value of the return difference

matrix as function of the frequency; section V introduces a

design technique using optimization routine in order to

obtain a "complete robust" solution and section VI presents

the final conclusions.

13



II. MATHEMATICAL MODEL OF THE MISSILE

The work assumes a SEA-SKIMMING missile with the flight

in the vertical plane according to the path shown in Figure

0 ...........

C) .. .. . ... .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . .. . . ..

CJC

0 .............

0 . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.0 2.5 5.0 7. 5 10.0 12.5 1.5.0 17.5 20.0
TIM E(S EC)

Figure 11.1 - Missile Trajectory in the Vertical plane

The missile is assumed to fly at constant velocity,at

150 ft, when it is commanded to a final altitude of 30 ft.

Only the pitch channel will be analysed.

14



A. THE MISSILE

The missile will be considered as presented by Arrow

[Ref.1]. This model has been selected in order to avoid

classification problems. The geometry as well as its

characteristics are presented in Appendix A.

The states that were considered in our model are defined

in Table I as well as the relevant aerodynamics paramrsters.

In the Figure 11.2 we have the schematic representation

of the uncoupled pitch control chain of the missile,

neglecting the yaw and roll movements;

H
5

aS

zcb + _ tl G s z1(+OS

FFF

FF

Figure 11.2 - Block Diagram of the Pitch Control Chain of
the Missile.

where

I zcb - bias" acceleration;

)zc - commanded acceleration;

1)z - achieved acceleration;

15



v(t) - velocity;

H(t) - altitude;

H - commanded altitude.
s

The Transfer Function G(s) represents the missile itself

and the other blocks are the controller. The input to this

block will be the "commanded" acceleration and the output

will be the achieved acceleration.

The commanded acceleration comes from the feedback of

the states of the controller (compensated state, velocity

and altitude) added to a "bias" acceleration.

In the diagram of Figure 11.3, we have a complete

representation of the system with the states used in

modelling our missile.

The "STATE EQUATIONS" which represent our system are the

following:

= -150.0 x- 2,646.66 x- 705.75 x.

2 1.353 x + 4x 1.353 + 1.334 H1 3 zc s
=-6.572x - 5 x + 6.572z -6.481 H

X3= 1 3zc s

x 4=-44.332 x - 59.109x

xs = × % - 0.1482 x. - 0.0395 6  (II.1)

e,= -188.4 x 7 + 188.4 x.
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7 = -0.4608 x - 2.231 x - 0.3406 x + 2.231 x +

-15.0949 x - 20.13 x 6 - 0.143 x 7 + 0.4608 zc

- 0.4544 H
s

0S

x= -50.0 x - 495.0 x + 495.0 HS 6 9 S

x = -17.644 x - 4.705 x

This system of equations can be represented in matrix

form, where we have:

x = A ; + B u

-150 0 0 0 2,646.66 -705.74 0 0 0 0

1.35 0 1.0 0 0 0 0 0 0 0

-6.5 0 -5.0 0 0 0 0 0 0 0

0 0 0 0 -44.33 -59.11 0 0 0 0

A 0 0 0 1.0 -0.15 -0.04 0 0 0 0

0 0 0 0 0 -188.4 188.4 0 0 0

-0.46 -2.2 -3.4 2.2 -15.1 -20.13 -0.14 0 0 0

0 0 0 0 0 0 0 -50. -495 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 -17.64 -4.71 0 0 0 0

17



0 0
-1.353 1.334
6.572 -6.481

0 0

0 0

B = 0 0

0 0

0.461 -0.454

0 495.0

0 0

u -F x

0 0 0 0 0 0 0 0.049 0.98615 1.404j

0 0 0 0 0 0 0 0 0

The vector input "u" has two components

1zc - the commanded acceleration; and

H - the desired altitude.
s

The input )zc is considered as two parts; one

corresponds to the feedback of the states (from the

controller) and another is the "bias" acceleration of 1g.

18



TABLE I
DESCRIPTION OF THE SYSTEM STATES AND

AERODYNAMIC COEFFICIENTS

x ......................... filtered acceleration

x ...................... acceleration compensator

x . . . . . . . . . . . . . . . . . . . . . . . acceleration compensator

x ........................ q - pitch angular rate

x s  ........................... .x - angle of attack

...................... Sp- pitch tail incidence

............ &PC- cummanded pitch tail incidence

x .................... x - controller compensatorc

X....................................... H(t) - altitude

0 ............................... v(t) - velocity

AERODYNAMIC COEFFICIENTS

C slope of curve of pitching moment coefficient

C m~change in Cm per degree pitch control incidence

CN slope of curve of normal force coefficient C Nx

CN change in CN per degree pitch control incidence

19
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Figure 11.3 - The Missile Model
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The model can be separated in two main parts; the

CONTROLLER and the AUTOPILOT/AIRFRAME.

B. THE CONTROLLER

The controller was developed based in the procedure

introduced by Dowdle [Ref.2].

The missile was considered as a point mass and,

therefore the altitude as function of time is calculated by

double integration of the achieved acceleration.

The controller was developed without take in

consideration the missile itself, i.e., the transfer

function G(s) in Figure 11.2 was assumed as "unity".

According to the [Ref.2], this procedure is valid if the

bandwidth of G(S) is larger than the crossover frequency of

the controller.

Due to the constraints of the scenario, the controller

has to be designed in such way that no overshoot will be

tolerate. Further requirements are that the angle-of-attack

and the acceleration, have to remain below a certain level.

The controller are responsible for the commanded

acceleration by feedback of its states.

The technique used to solve the feedback problem was the

LINEAR QUADRATIC STATE FEEDBACK REGULATOR. This solution has

a large stability margin with respect to phase variations,

as well infinite gain margin.

21



The "cost function" to be minimized is the following:

J f C zTt) Q z(t) + uTt) R u(t) I dt (11.2)
0

In Figure 11.4 we have the schematic representation of

the CONTROLLER.

H
s

)(t) V(t) H(t)
z

1 1 + '

1h - G (s)

Figure 11.4 - The Controller

The LEAD compensator indicated in the controller is used

in order to improve the transient response characteristics.

Its transfer function is

K*(s+w)
G (s) z
c (s+w)

p

where K = 10.0

w = 0.5 rad/sec
z

w = 50.0 rad/sec

P

In order to have the state equations of the CONTROLLER,

we draw in FIGURE 11.5 its signal flow graph using the

22



adequate transformation of the compensator and showing the

states that will be feedback.

H
s

z (t) 1 1/s v t) 1/s H (t) 1i -

xI

F 3

F2

Z 1 1/s sx, w- wp k

p 

1

Figure 11.5 Signal Flow Graph of the Controller

The state vector is defined as:

x(t) = E x(t) (H(t)-H ) v(t) I T (11.2)
c s

In the Figure 11.5 the states of the controller are

represented as indicated in Table I.

From the diagram, we have the following STATE EQUATIONS:

x Ax + B u (11.3)

z = D x

23



The state matrices are:

w K(w- w) 0K z p

A = 0 0 1
0 0 0

0
B = 0

1

D = I1KO]

Since we consider to feedback all the states, let in

equation II.1

Q = I (Identity)

and R = 0.04

Using the OPTSYS program to solve that OPTIMUM CONTROL

problem, the following feedback gains were obtained;

F 1 = 0.049

F 2 = 0.98615

F 3 = 1.4044

correspondents to the feedback of the states indicated

in Figure 11.5.
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C. THE AUTOPILOT/AIRFRAME

The controller was developed assuming the transfer

function of the Autopilot/Airframe as unity.This assumption

implies that the achieved acceleration is equal to the

commanded acceleration; however, they are different due to

the aerodynamic of the missile.In order to take that in

consideration we have to introduce the autopilot/airframe

model.

Normally, the sea-skimming is a SKID-TO-TURN missile

(turns instantaneously), but due to problems of

classification we have used for our Sea--Skimming model the

Autopilot given by Arrows [Ref.1] for a BANK-TO--TURN

missile (has to bank in order to turn) that was designed to

fly at 30,000.0 ft instead of sea level.

Take in consideration that the main objective of this

work is to establish a procedure for sensitivity and

robustness analysis and that we are studying only the

vertical movement of the missile uncoupled of any other

movement,we consider that the approximation is useful.

In Figure 11.6 we have the block diagram of the missile,

representing the plant without the controller.

The state equations derived from this diagram are on the

Appendix A.
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Figure 11.6 Block Diagram of the Airframe/Autopilat
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D. THE TIME RESPONSE

Using the software CONROLS, the system represented by

equations (If.1) was simulated and the time response for the

altitude, velocity, acceleration and angle of attack were

obtained.

The altitude is in Figure 11.7 and we can see that the

missile arrives at the desired altitude in about 10 seconds.

No overshoot is shown and a small steady-state error is

presented characterizing our Type 0 system.The steady-state

error was less than 5%.

The angle-of-attack ,reproduced in Figure II.8, varies

between 3.7 deg and -1.2 deg satifying the condition

required by the airframe, as indicated in [Refs. 1 and 2J.

The acceleration is in Figure 11.9 and the velocity is

in Figure II.10 representing a smooth behavior of the

system.

In the next chapter will be presented the Sensitivity

Analysis using the developed model.
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III. SENSITIVITY ANALYSIS

A. INTRODUCTION

The objective of the SENSITIVITY ANALYSIS is to

analyse how the behavior of the system is affected by

variations of the aerodynamic parameters.Those variations

are due to uncertainty of the design and/or problems ocurred

during the flight.

From the developed model we can see that the important

parameters to our system are Cm , CNx, CM& and CNS, as

described on TABLE I.

The variations could be interpreted as perturbations in

our STATE EQUATION SYSTEM (A-matrix) and the analysis,

basically, take into consideration the change in the poles

positions due to change in the parameters.

As we have feedback, we replace the A matrix by the

augmented A-matrix( A = A - B F ).a

The sensitivity of a matrix where the elements are

time-invariant,can be verified in different ways. Among

those procedures, some are enumerated below.

First, using the method introduced by Golub and Van Loan

[Fef.3J we can analyse the matrix to verify how it is "ill-

conditioned"; where an "ill-conditioned" matrix means a very

sensitive system.
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In order to accomplish the analysis, we have to

calculate the "condition number". It is defined as:

-1
K(A ) = II A II I A I

a a a

where

II AlI is the norm of augmented A and

-1
II A II is the norm of inverse augmented Aa

The condition mumber depends upon the considered norm

but it can be proven that the condition of the matrix will

be the same for all norms.

When we use the 2-norm one has

K (A ) = a (III.1)
5 (A )- a

where s (A) and s (A) are the maximum and minimum
a a

singular value of the A-augmented matrix, respectively.

Calculating the condition number for the different

values of the parameters it is possible to establish how the

sensitivity of the system changes when there are changes in

some elements of the state matrix.

The problem of this kind of analysis is that we can not

verify the sensitivity of the system with respect to a

specified element of the state matrix but only the

sensitivity of the overall system.

In Frank [Ref.4], we have another method where the

analysis is done based upon the STATE SENSITIVITY EQUATIONS
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that could be characterized in time domain, frequency domain

orin terms of a performance index.

The basic idea is to define "sensitivity functions" and

analyse the behavior of the system by those functions.

The analysis starts with the system defined by:

;= f (x,t,u,ac) (111.2)

where:

- x represents the state vector;

- t is time ;

- u is the input vector ; and

- ! represents a vactor of the different parameters.

If a is changed by &a (some perturbation) and using

Taylor's expansion,we have:

A&x (t,00) = ax j A (111.3)

The subscript x 0 indicates that the partial derivative

is taken at the nominal parameter values.

The partial derivative is called the trajectory vector

th
) with respect to the j- parameter and has the same

dimension as the state vector.

The components of that vector are defined as the

TRAJECTORY SENSITIVITY FUNCTION.

ax(toa)
ij(t -o) o (111.4)
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The equation 111.4 represents the partial derivative of

the it h state with respect to the jth parameter. Assuming we

have n states and m parameters, it will be possible to form

a n x m matrix called TRAJECTORY SENSITIVITY MATRIX (111.5).

The matrix is also called the JACOBIAN MATRIX.

C)x I x I

i m

x = .(111.5)

axn Cxn

1 m

The change in the behavior of the system will be

determined by:

r

Lx Y (t,X 0 ) A __ Ax. (111.6)

j=1

The analysis is based in how the sensitivity function

changes when we change the parameters. The result could be

visualized by plotes of x as function of time, as states of

the expanded system.

Finally, we consider the EIGENVALUE SENSITIVITY

presented by Porter & Crossley [Ref.5].

This latter procedure was choosen to be used in the

analysis of this thesis, where the sensitivity of the sistem

is related to the variation of the eigenvalues of the
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augmented matrix (A a A - B F) with respect to the
a

variation of the parameters.

In order to further develop our analysis, the concept of

MODAL ANALYSIS will be introduced.

B. THE MODAL ANALYSIS

The concept is based in generating the input vector of a

system by linear feedback of the state vector in such way

that the prescribed eigenvalues are associated with the

dynamic model of the resulting close-loop system.

As an example, let us assume a scalar system:

; = a x(t) + b u(t); (111.7)

if u(t) = 0 .... > x = x 0 exp (at)

where exp (at) defines the "mods" rf the =y4tem.

If a L 0 the system is stable and if a ? 0 the system is

unstable.

Assuming g as the feedback gain, we have:

u(t) = g x(t) (111.8)

Inserting the value of u from equation 111.8 in equation

III.7:

x = (a + b g) x(t) (111.9)

and, solving for x(t):

x(t) = x(O) expl(a + bg)tJ

Now the mode of the system is defined by the exp(a+bg).
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When we have a state vector, the system is represented

by

x = A x + B u (III.10)

Considering

u -F x

and assuming all the states as observable and

controllable, the substituting value of u in equation

(III.10), we have

= (A - B F) x or x =A x (III.11)
a

The precise nature of the free motion of the continuous

time system following any disturbance can be described in

terms of eigenvalues and eigenvectors of the augmented plant

matrix (A).a

Assuming A a has n distinct eienvalues (xjX2,...,X n);

then it also has n corresponding linearly independent

eigenvectors u 1 u ... ,un such that

Aa  u i  = Xi  ui; i=1,2,...,n (111.12)

Using the calculated eigenvalues and eigenvectors we can

write the modal matrix of A as:
a

U = [u u ... u
£ n

where each column of U is the eigenvectors of A
a

Based in the modal matrix U, the equation (111.12) could

be written as
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A U=AU (III. 13)
a

with A as a diagonal matrix of the eigenvalues.

The matrix A is obtained from equation (111.13):

-i
U A U = A (III. 14)a

In addition to the eigenproperties of Aa' the

corresponding properties of its transposed matrix (A') play
a

an important role in the modal analysis.

The matrix A' has the same eigenvalues of A , but a
a a

different sets of eigenvectors.It can be represented as

A' v. v.; j =1,2, n
a j j J

where v represents the eigenvectors of A'.
i a

In [Ref.5] it is shown that

v. u = u. v. = i (111.16)

where Sij is the Kronecker delta; i.e.

Si I 1 if i = j

and = 0 if i 0 j

Thus in matrix form

V'U = I (III.17)

where the collumns of V are the vectors v.
I

Using the modal matrix of A and introducing a new statea

vector y(t), we have:

x(t) = U y(t) (III.18)
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The derivative of both sides, gives us:

Xt) = U ;(t) (III.19)

with ;(t) = A x(t) (111.20)
a

Combining equations (III.18),(III.19) and (111.20), we

have:

;= U- Aa U y(t)

and using the equation (111.14),

Y(t) = A y(t) (111.21)

Because the matrix A is diagonal the equations are

uncoupled and the solutions of the system represented by

(111.16) are given by

Yi(t) = yi(O) exp(xit) (111.22)

Aplying equation 111.18,

x i (t) = [u 1 u 2 ... Un I y-

Y2 (111.23)

Yn

which implies that

x(t) = ulYl(0) exp(x1t) + u 2 Y2 (0) exp(X 2 t) +

Taking the value of y(t) in equation (111.18),

y(t) = U- x(t) (111.24)

Using equation (111.17),

y (0) = v.' x(o) (III.25)

1 1
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Combining equations (111.23) and (111.25):

x(t) = x(O) u.v exp(Oit) (111.26)

Equation 111.26 shows that the system represented by

(III.8) has its modes described by the eigenvectors of Aa

and its transpose and eigenvalues of A matrix. Also, in
a

order to have the system stable, x(t) --- > 0 as t --- > 

which happens if and only if

Re X < 0 , for all the values of i1

In the Modal Control [Ref.5] all this procedure is shown

for the case when some of the eigenvalues are equal which

does not apply to our system.

As the role of the eigenvalues is so important, we can

verify how the sensitivity of our controll system by

analysing the change in the eigenvalues of the matrix A or

the augmented A for the close loop system when any element

is changed.

In order to avoid calculating the new eigenvalues for

each different A, the equation (111.26) can be used to find

approximated values that can be analysed analytically.
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C. EIGENVALUE SENSITIVITY

In our system we consider the change in the elements of

the matrix due to variations in the aerodynamic

coefficients.

Basically, we concerned with the eigenvalues that are

changed in the direction of the right hand plane,making the

system unstable or affecting the time response.

The result of the analysis could be plots or tables

relating the eigenvalues with the variation of the

parameters.

For each change in the parameters, we have a new matrix.

Approximations to the eigenvalues associated with the

different plant matrices in the vicinity of the original one

could be used without having to compute the eigenvalues of

each new matrix.

We describe the approach presented in the reference

[Ref.5] applying the "first order eigenvalue sensitivity" to

the change of one of the parameters and doing the complete

analysis with the calculated eigenvalues.

1. First-order Eigenvalue Sensitivity

From equation III.11, we have:

x(t)= A x(t)
a

Let's assume

A a= [akl]
where akl is any element of Aa
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Differentiating equation (111.12) with respect to

a kl indicates that

aA u. + A aui = xi U. + A Cui (111.27
1~ - -a 1 ~4kl ak, ki ki

multiplying (111.27) by vi' then gives
i

v' aAu. + v A aui ~v' axi U. + X. V' aui
1- 1 1 1- 1 1 1-ak

As v A is equal to x . v , we have

vi aA u. =v' i u
I1- 1L 1a kl 3L ki

Which reduces to the set of equations

ai= v . (k) u . (1); ikl11,2,...,n (1.6

aa kl 1 1

Due to

aa kl k i

In equation (111.28), v.(k) and u.(l) represent the
1 1.

k- element of v.i and the 1- element of u .L, respectively.

Those coefficients may be considered as the

elements of a set of n eigenvalue sensitivity matrices.

The new eigenvalues 0X..L) of the altered matrix,

when the element a kl is changed will be calculated as

1a 1 kak1
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When we have more than one parameter altered, the

linearity could be used and the final eigenvalue will

obtained from the summation of the sensitivity coefficients

multiplied by the respective change in the coefficients.

As an example of this procedure, let's consider our

system, changing the value of C such thatm p

AC = 0.02m~p

When Cm& is changed as specified, the following

elements of the augmented-A matrix of the state equations

presented in the Chapter II are changed:

A (4,6): Aa = 14.778
a *

A a(7,6): Aa = 5.035

The eigenvalues and eigenvectors of the augmented A

matrix and of its tranpose were calculated using the program

Matlab.

a) Eigenvalue x I

X = -159.75 + j 18.85

A X =Iv (4) u 1 (6) & a 1 + Cv (7) u 1 (6)3 A a 7 6

v (4) = -0.0148 - j 0.0039

v1(7) = 1

u(1(6) = 0.014 - j 0.027

Al = -159.815 + j 18.85
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b) Eigenvalue x :

A, =-159.815 - j 18.85 (complex conjugate of x,)

c) Eigenvalue X 3

A 3 = -50.0

AX = v 3(4) u (6) ] 4 6  [+ V (7) u (6)) Aa7&

V (4) = 0.0003

v (7) = 0.0039

u (6) = -0.0013

X = -49.99998

d) Eigenvalue A 4

- -8.61 + j 7.91

= vf (4) u4 (6)3 a a 6 + [v ,(7) u ,(6)] &a 7 ,,

v (4) = -0.1667 - j 0.1322

v (7) = 1

u 4(6) = -0.0334 - j 0.132

X = -8.95 + j 7.6355

e) Eigenvalue X

= -8.95 - j 7.6355

f) Eigenvalue X.
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A6  = -1.82 + j 2.02

IV6 = (4) u (6) a +Ev (7) u (6) a 76

v6(4) = 0.1718 - j 0.0161

v6 (7) = -0.5737 + j 0.1689

u 6 (6) = 0.01 + j 0.0363

X6  = -1.846 + j 2.05

g) Eigenvalue x? :

A 7  = -1.846 - j 2.05

h) Eigenvalue xA "

A a = -2.71

A~xe = [v (4) u (6)] a 46 + [v (7) u (6)3 Aa76

v (4) = 0.1741

v (7) = -0.6597

ue(6) = -0.0396

As = -2.681

i) Eigenvalue x p

X 11 = -0.5

AX = IV (4) u (6)3 a + Iv (7) u (6)] a76

v ?(4) = 0.1718 + j 0.016
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v (7) = -0.5737 - j 0.1689

u (6) = 0.01 - j 0.0363

= -0.4741

j) Eigenvalue x10 :

A 1 = -0.1410

AA = Iv (4) u (6)) Aa + [v (7) u (6)3 Aa10 10 10 '46 10 10 76

v (4)= 0.1741

v (7) -0.659710

U 16)= -0.0396

X 0 = -0.1104

For the analysed parameter, our system is

unsens4tive, taking in consideration the small differences

between the new and original eigenvalues.

Repeating this procedure for all different parameter

values will give us the approximation of the new eigenvalues

and that can be helpfull in a qualitative analysis of what

parameter has more effect over our model.

As we want to verify the effect in the time

response and due to the Software available the analysis will

be done completely with the calculated exact values.
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2. Exact Eigenvalues

Using the Controls Program, we will verify the variation

of the eigenvalues of the augmented A matrix ( A - FB) with

respect to the variation of the parameters and by simulation

we analyse the effects on the time response.

At the end of the analysis we compare the results of the

example used for the first order approximation with the

exact values that were calculated.

As reference, the eigenvalues of the original system

are:

\ = -159.746 + j 18.9791

\ = -159.746 - j 18.9792

= -49.9992

A' = -8.60697 + j 7.90968

= -8.60697 - j 7.90968
= -181859 + 7.098

= -1.81854 + j 2.0238

S= -1.81854 - j 2.0238

= -2.70266

= -0.503819

10= -0.143073
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Each aerodynamic coefficient, that takes part of the

considered model was changed up to +25% and the eigenvalues

of the perturbed system matrix (A-augmented) were analysed

as well as the TIME RESPONSE of the system

a. C

On TABLE II we have the eigenvalues related to the

considered values of C and as we can see, with exception
th

of the 7t h eigenvalue, the changes are small and the system

is pratically insensitive to that variation.

The time responses are shown in Figures 111.1, 111.2,111.3

and 111.4 .

- Angle-of-attack (Figure III.1) - changes in the same
direction of C with the minimum value changing about

0.5 degrees in the negative direction. The maximum
value stays almost constant ;

- Acceleration (Figure 111.2) - the change was less than

5 ft/sec either the maximum or the minimum values;

- Velocity (Figure 111.3) - almost the same ; and

- Altitude (Figure 111.4) - almost the same.

b. C
m &p

The change in the eigenvalues are on TABLE III ; the

time response is on Figure 1II.5,1II.6,11I.7 and III.S.

The variation of the eigenvalues are slightly higher

with changes in C but the system stays stable and the timemEp

response has a small variation.
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Angle-of-Attack (Figure 111.5) - The minimum values
increases negativelly about 0.5 degrees but in the
contrary direction of the coefficient, i.e., increasing
the value of C negativelly, the minimum was smaller;

m p

Acceleration (Figure 111.6) - small changes;

Velocity (Figure 111.7) - small changes;

Altitude (Figure 111.8) - pratically the same.

c. CNo

The change in the eigenvalues are on TABLE IV and the

time response is on Figures III.9,1II.10,11I.11 and 111.12.

The changes in the eigenvalues are small but the effect

on the time response is more sensible, mainly on the angle-

of-attack.

- Angle-of-Attack (Figure 111.9) - the maximum and the
minimum increase 1.0 degree in the positive and
negative directions, respectivelly;

- Acceleration (Figure III.10) - maximum changes of 10%
in the negative direction (minimum) and 20% in the
positive direction (maximum).These values are smaller
when we increase the value of CNa ;

- Velocity (Figure III.11) - small changes;

- Altitude (Figure 111.12) - does not change.

d. CN &p

The change in the eigenvalues are on Table V and the

time response are on the Figures 111.13,111.14,111.15 and

111.16

- Angle-of-Attack (Figure 111.13) - Changes almost 1.0
degree with the maximum and minimum increasing when the
value of the parameter increases;
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Acceleration (Figure 111.14) - the maximum increases
with the value of the parameter;

Velocity (Figure 111.15) - pratically the same for all
the considered values of the parameter;

Altitude (Figure 111.16) - constant.
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TABLE II

C - SENSITIVITY

c -0.04 -0.05

-159.741 + j 18.9843 -159.743 + j 18.9816

-159.741 - j 18.9843 -159.743 - j 18.9816

-49.9992 -49.9992

-8.55822 + j 6.37i30 -8.56386 + j 7.18736

-8.55822 - j 6.37130 -8.56386 - j 7.18736

-2.31740 + j 2.95574 -2.14117 + j 2.43275

-2.31740 - j 2.95574 -2.14117 - j 2.43275

-1.79944 -2.14200

-0.51650 -0.510282

-0.14304 -0.14306

C -0.07 -0.08

-159.748 + m 18.9762 -159.751 + j 18.9735

-159.748 - j 18.9762 -159.751 - j 18.9735

-49.9992 -49.9992

-8.66197 + j 8.55389 -8.72178 + 1 9.14021

-8.66197 + i 8.55389 -8.72178 + 1 9.14021

-1.47981 + j 1.81088 -1.22077 + 1 1.70061

-1.47981 - 1 1.81088 -1.22077 - j 1.70081

-3.27131 -3.67125

-0.49779 -0.49148

-0.14308 -0.14308
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TABLE III

C - SENSITIVITYm &P
C -0.06 -0.07

-162.604 + 16.7131 -161.200 + m 17.9141

-162.604 - j 16.7131 -161.200 - j 17.9141

-49.9992 -49.9992

,-5.74603 + j 8.66120 -7.13033 + j 8.50992

-5.74603 - j P.86120 -7.13033 - i 8.50992

-1.24694 + j 1.66681 -1.54230 + j 1.80335

-1.24694 - j 1.66681 -1.54230 - j 1.80335

-3.86370 -3.30548

-0.49103 -0.49828

-0.14311 -0.14309

C o -0.09 -0.10

-158.243 + j 19.9192 -156.678 + i 20.7492

-158.243 - j 19.9192 -156.678 - j 20.7492

-49.9991 -49.9990

-10.1621 + j 6.98960 -11.7920 + 1 5.53519

-10.1621 - j 6.98960 -11.7920 - 1 5.53519

-1.47981 + 1 1.81088 --2.03752 + j 2.55411

-1.47981 - j 1.81088 -2.03752 - j 2.55411

-2.27254 -2.02276

-0.50786 -0.51120

-0.14307 -0.14306
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TABLE IV

C - SENSITIVITY

CN 0.13 0.14

-159.750 + j 18.9895 -159.748 + j 18.9842

-159.750 - j 18.9895 -159.748 - j 18.9842

-49.9992 -49.9992

-8.76667 + j 8.27012 -8.68784 + j 8.09494

-8.76667 - 8.27012 -8.68784 - j 8.09494

-1.18629 + j 1.74321 -1.47163 + j 1.84903

-1.18629 - j 1.74321 -1.47163 - j 1.84903

-3.63456 -3.22775

-0.48878 -0.49663

-0.14314 -0.14310

CNo 0.16 0.17

-159.744 + j 18.9736 -159.741 + j 18.9683

-159.744 - j 18.9736 -159.741 - j 18.9683

-49.9992 -49.9992

-8.52441 + j 7.71274 -8.44077 + j 7.50213

-8.52441 - j 7.71274 -8.44077 - j 7.50213

-2.15317 + j 2.32249 -2.40105 + j 2.67918

-2.15317 - 1 2.32249 -2.40105 - 1 2.67918

-2.20610 -1.88565

-0.51041 -0.51651

1-0.14305 -0.14303

53



TABLE V

C NN- SENSITIVITY

CNso 0.02 0.03

-159.004 + j 12.1138 -159.748 + i 18.9842

* -159.004 - j 12.1138 -159.748 - j 18.9642

-49.9996 -49.9992

-9.37545 + j 7.11519 -8.68784 + j 8.09494

-9.37545 - j 7.11519 -8.68784 - j 8.09494

-2.24432 + j 2.56109 -1.47163 + j 1.64903

-2.24432 - j 2.56109 -1.47163 - j 1.84903

-1.98723 -3.22775

-0.51356 -0.49663

-0.14304 -0.14310

CN~p 0.05 0.06

-160.106 + i 21.5632 -160.459 + j 23.8437

-160.106 - j 21.5632 -160.459 - j 23.8437

-49.9990 -49.9988

-8.25204 + j 8.25703 -7.91449 + j 8.57438

-8.25204 - 8 6.25703 -7.91449 - j 8.57438

-1.57370 + j 1.85345 -1.35009 + j 1.75196

-1.57370 - j 1.85345 -1.35009 - j 1.75196

-3.18783 -3.60970

-0.49848 -0.49275

-0.14310 -0.14312
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D. CONCLUSION

As a conclusion for the sensitivity analysis, we have

the following:

With respect to the eigenvalues, the pitch control

system is more sensitive to changes in Cmo and CN p than

changes in C and CNa ; and

Considering the time response, we can verify that the

angle-of-attack is sensitive to all the parameters with

higher variation with CNx; the acceleration is more

sensitive to C and CNa ; the velocity has the maximum

value changed less than 10% with respect to all the

parameters; and the altitude is insensible for the

considered variations.

It is not necessary to emphasize the importance of this

analysis for the design of the control system, but thinking

only in the eigenvalues and comparing the results of the

first order approximation presented for C with those of
m~p

Table III for C changed to -0.06 (AC = 0.02) we can have

an idea of the importance of the parameter, using that

approximation.
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IV. ROBUSTNESS ANALYSIS

A. INTRODUCTION

In the previous chapter we take into consideration the

change in the eigenvalues and in the time response of the

system due to variations on the aerodynamic parameters that

take part into the model; under the robustness analysis we

verify what we can expect of the system when it is affected

by any kind of perturbation.

The main idea is to use the robustness analysis to

design a new set of feedback gains in order to have the same

behavior in different situations and/or environments which

act as perturbations to our missile.

In classical frequency domain, for single-input single-

output systems(SISO), a robust design can be achieved using

Bode, Nyquist or Nichols plots. With these techniques it is

possible to define gains that give us gain and phase margins

for a "robust" system. For multi-input multi-output systems

(MIMO), the classical techniques are no longer valid.

Taking this in consideration, we have analysed the

robustness of the original design by means of the minimum

singular value of the return difference matrix for different

frequencies and we will use the same technique to improve

the control system.
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In order to show why we are applying this technique, we

start with the Nyquist Criterion for a SISO system and

extend the analysis to a MIMO system, using the minimum

singular value theory, as explained by Lehtomaki, Sandell

and Athans in rRef.6].

B. THE NYQUIST CRITERION

Let's take in consideration the SISO system represented

in Figure IV.1.

U - s)

Figure IV.,1 Single-Input Single-Output System

where G(s) includes the controller and plant dynamics

with unity feedback .

The Nyquist criterion states that if the open loop

transfer function G(s) does not have any pole in the right

half s plane, then the locus of G(s) will not encircle the

point (-1,0) in the Nyquist plot, where jw is substituted

for s and the axes represent the real (Re) and imaginary

(Im) parts of G(jw) for various frequencies.
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A Nyquist Plot is given in Figure IV.2 and it can be

used to design feedback gains that ensure a robust system.

The measure of the system stability are Gain and Phase

margin obtained from the Figure, as indicated.

im GOj&J)
!

- perturbed

GM system

-I / I yse

K Re
+ G(1G)

//

Figure IV.2 Nyquist plot - Stable System

The Phase Margin (PM) is the additional phase lag at the

gain crossover frequency required to bring the system to the

limit of instability and the Gain Margin (GM) is the

reciprocal of the magnitude IG(jw) I at the frequency where
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the phase angle is -180 . The gain crossover frequency is

the frequency at which IG(jw) I is unity.

The Phase and Gain margins are a measure of how close a

polar plot is to the -1 + jO point.

Considering the system subject to additive perturbation,

as we have in the diagram of Figure IV.3.

-A G

6- (s) -

Figure IV.3 Additive Perturbation

In order to have the system stable, despite the

perturbation, we need

IAG(jw) I < 11 + G(jw) I (IV.1)

As we can see in Figure IV.2, this condition ensures a

stable system.

This idea can be extended to MIMO problems through the

use of matrix norms and of applying the Multivariable

Nyquist Theorem.

75



C. MULTI-INPUT MULTI-OUTPUT SYSTEM

The generalization of the SISO theory discussed in the

previous section has been made for the MIMO problem.

Let's consider our system as represented in chapter III

and apply the transformation in order to have the open loop

transfer function between input and output.

x= A x + B u (IV.2)

Applying Laplace Transform to the equation (IV.2), we

have

sX = AX + BU (IV.3)

where X and U represent the Laplace Transform of t and

u(t), respectively.Taking the value of X in equation (IV.1)

X = [sI - A]- IB U (IV.4)

As Y = C X (IV.5)

We have Y = C [sI - A]-I B (IV.4)
U

This transfer function corresponds to G(s) in Figure
IV.4.

U (} ).G(s) 1_

H(s)

Figure IV.4 Return Difference
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From Figure IV.4 it is possible to define the "Return

Difference Matrix" (Kwakernaak and Sivan, [Ref.6]) that

corresponds to opening the loop at a given point and

connecting an external input variable at this point; for

example, at point 1. Assuming the input u as zero, we have:

Y (s) = - G(s) H(s) V (s) (IV.5)

where V (S) corresponds to the new input variable and

Y (s) the -returned variable".

The difference between Y (s) and V(s) is

V(s) - Y (s) = E I + G(s)H(s)] V(s) (IV.6)

The matrix I + G(s)H(s) is defined as the "Returned

Difference Matrix", with G(s) equal to

G(s) = CUsI - A]-I B (IV.7)

As explained by Lehtomaki,Sandell and Athans in ERef.7],

the Multivariable Nyquist Theorem is derived from the

relationship

det[I + G(s)H(S)] =jkcl (s) (IV.9)
1ol (s)

where Icl(s) = det(sI - A) corresponds to the

characteristic polynomial of the open loop transfer function

and §ol(s) = det(sI - A + BF) corresponds to the

characteristic polynomial of the closed loop transfer

function from the system represented in Figure IV.4.
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The multivariable Nyquist theorem which requires that a

closed loop stable system have the same number of

counterclockwise encirclements of the origin by the locus of

the determinant of I + G(s)H(s) as the number of open loop

poles that are unstable.

If I + G(s)H(s) is quasi-singular, a small change in G

may make the matrix singular ; this causes the det[I +

G(s)H(s)] to become zero and the Nyquist encirclement count

to change indicating an unstable system.

Basically,in order to analyse the robustness of the

system we have to verify how close the return difference

matrix is to being singular as a function of frequency (w).

The natural measurement of the singularity is the

minimum "singular value", since this is the tightest norm.

The singular value of a matrix M is defined as

U = x. ( M HM))1± / 2  (IV.1O)
1 1

MH represents the conjugate transpose matrix of a

generic M matrix and x any eigenvalue of the product of MH

times M.

If the minimum singular value is close to zero the

matrix is quasi-singular and the system is not robust.

If one assumes

a(I + G(jw)H(jw)) > 0o (IV.11)
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then it can be shown [Ref. 73 that the gain and phase

margins for the system may be represented by equations

(IV.12) and (IV.13), i. e.,

Gain margin: GM = 1 (IV.12)1 +a 0

Phase margin: PM = + cos 1 11 - (X0 ]) (IV.13)
2

Universal gain and phase margins curves, presented by

Gordon [Ref. 8] and repeated in Figure IV.5 allow the

designer to pick a singular value that corresponds to a

desired stability margin for the system to be designed.

From singular value plots the we will be able to

identify the critical frequencies or range of frequencies

where the singular value is below the chosen level from the

Figure IV.5.
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D. SINGULAR VALUE ANALYSIS

Using the program developed by Gordon ERef.8], with

small changes to make it compatible with the size of our

system and to input the matrices more easily, we calculate

the minimum singular value of the return difference riiatrix,

with the frequency varying from 0 to 50 rad/sec.

The program utilizes the IMSL subroutines to generate

the return difference matrix as well as to made the singular

value decomposition, given the minimum singular value for

different frequencies.

The return difference matrix depends on the point where

we open the loop represented in Figure IV.5. :-or the

explained case, considering point 1, we have the "output"

difference matrix, that corresponds to I + G(s)H(s); if the

loop is open at point 2 we have the "input" case and the

return difference matrix will be I + H(s)G(s).

From the Figure IV.5 we choose as reference, for our

analysis, the minimum singular value as 0.6 that gives us a

phase margin of about 350 to characterize a "robust" system.

The minimum input singular value is plotted in Figure

IV.6.

It shows that the system is robust, except for

frequencies between 0.6 and 5.0 rad/sec.
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The results related to the minimum output singular value

are in Figure IV.7 and the robustness of the system is poor

from 0 to 18 rad/sec.

Those results indicate that the behavior of the system

under perturbations should present problem for frequencies

below 10 rad/sec.

To confirm this expectation, we have plotted the BODE

diagram (magnitude) for the closed loop system considering

the angle-of-attack and altitude with respect to both inputs

(acceleration and desired altitude).

The diagrams are on Figures IV.8 to IV.11, where can see

the attenuation at the low frequencies indicating that we

can not expect good response at those frequencies and one

could further expect problems with robustness as is evident

from the singular value plots.

On the next chapter we try to .mprove the system

designing a new set of feedback gains, in order to have a

robust system.
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SINGULAR VALUE ANALYSIS
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V. IMPROVING THE DESIGN

Under this chapter we try to improve the system by

calculating new feedback gains that will yield a mor-e robust

system, taking into consideration the results indicated in

Figures IV.6 and IV.7.

The POP' AR program, developed by Gordon [Ref.8] will be

used. A numerical optimization technique is applied in order

to increase the minimum singular value of the considered

return difference matrix, therefore, a resultant robustness

of the design.

The development in this chapter will be preceded by

comments on numerical optimization and a description of the

computer program.

A. OPTIMIZATION

The optimization was accomplished by means of the

Automated Design Synthesis Program (ADS) developed by

Vanderplaats [Ref.9].

The purpose of ADS as of others numerical optimization

routines is to find the "best" possible solution for the

problem, starting from an initial set of variables and

updating the design iteractively. The problems can develop

in convergence of the method and in the computer time
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needed. If the problem has multiple solutions, the

optimization does not always lead to the absolute optimum.

The ADS program is designed as a black box optimizer

which allows the user to choose combinations of one

dimensional search, optimization algorithm and strategy.

ADS is used as a subroutine and the parameters that

correspond to the different applications are chosen by the

user, as explained in [Ref.9].

The preferred method used in the ADS applications is

referred to as Sequential Unconstrained Minimization

Techniques and can be considered as a method that starts

with an objective function and the constrains combined into

an augmented objective function and then minimizing this

function as if the problem was unconstrained.

ADS employs penalty function techniques as well as an

Augmented Lagrange Multiplier.

As presented in ERef.83, the iteration between the

user's program and the ADS routine can be represented by the

block diagram of Figure V.1; where the "info" parameter is

used as a "flag" for a dialogue between the user and the ADS

routines.

The details for utilization of ADS are presented by

Vanderplats in [Ref.8].
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B. POPLAR PROGRAM

The Gordon's program has the capability of calculating

the feedback gains that improve the response of the system

either by pole placement and/or by increasing the minimum

singular value of the return difference matrix.

The main objective is to improve the robustness by

increasing the minimum singular value above a desired level

chosen from the universal curve reproduced in Figure IV.5.

"Optimum" values of the feedback are calculated by

minimization of an Objective function whose pole placement

part is

1

OBJ 2 ( "\R R) + x 1 )

i=1 di di i

where

XR - real part of the desired eigenvalue i;Rdi

R - real part of the computed eigenvalue;

I - imaginary part of the desired eigenvalue i;Idi

X I- imaginary part of the computed eigenvalue i;
I

and, for the minimum singular value optimization, we

have

2
OBJ =2 max 1 0 , 5d - a (jwp) I I

where ad indicates the desired minimum singular value

and a is the minimum singular value at a certain frequency.

92



The optimization procedure changes the feedback gains

until the minimum singular value is raised to the desired

level.

The pole placement and robustness program calculates the

return difference matrix to be considered, working in the

complex space (as the analysis is conducted in the frequency

domain) and the objective functions, calling the ADS routine

to make the optimization.

Input's for the program are the matrices of the state

representation of our missile ( A , B , C and F),where the

observation matrix (C) was specified as Identity because we

are assuming all the states are observable as well as

controllable.

Other inputs are the desired minimum singular value,

desired pole locations and frequency interval to be

considered.

In our application of POPLAR the initial values of the

feedback gains are those of the original system and the

parameters for application of the ADS program are:

Strategy - Augmented Lagrange multiplier;

Optimizer - BFGS variable metric method for unconstrained
minimization;

One-Dimensional Search - Polynomial interpolation.

Two situations will be considered; the INPUT - minimum

singular value, where the return difference matrix is I + HG

and OUTPUT-minimum singular value with I + GH as the return

difference matrix.
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C. INPUT - MINIMUM SINGULAR VALUE

The program was first run to improve the minimum

singular value for the input situation within the same

interval of frequencies used in Chapter IV.

Due to the large CPU time involved, the program was run

for the critical band of frequencies and the result

evaluated for the complete interval.

The minimum singular value taken as reference from the

0
Universal curve was 0.6 that implies a phase margin of 35

We have an objective function taking into consideration

the improvement of the minimum singular value as well as a

part corresponding to the pole placement. The main goal is

to improve the singular value but with a solution such that

the poles are in positions where the time response satisfies

the requirements.

The weight of the pole placement part was considered as

10% of the singular value part.

The program was started considering only part of the

feedback matrix as free parameters, increasing this number

until a reasonable solution was found.

The best solution was found keeping the original

feedback gains and calculating gains to feedback all ths

other states to generate the commanded acceleration.

The computer output of the best solution with the

corresponding inputs is given in Appendix B.

94



The feedback gains that improve the robustness of the

system are the following

FF 0.04 -1.15 0.03 -1.7 -9.07 0.32 7.07 0.049 0.986 1.4

0 0 0 0 0 0 0 0 0 0

The plot of the minimum singular value for different

frequencies is given in the Figure V.2, along with the

values for the original system.

As we can see the minimum singular value was increased

in the critical values of frequency with the minimum

changing from 0.40 to 0.63 that indicates an improvement in

0 0the phase margin from 20 to 35 . Also the bandwidth where

the system was less robust was changed from 5.0 rad/sec to

approximately 1.0 rad/sec.

The robustness of the control system for all the

considered frequencies is better, arriving close to 0.9 with

a considerable improvement at low frequencies.

Using the software Controls, the time response was

plotted in Figure V.3.

The maximum and minimum values of the angle-of-attack

are smaller than those of the original system; the maximum

acceleration and velocity are slightly lower and an

undershoot of about 10% appears on the altitude, that could

be a problem in some flight conditions.
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We now turn to a consideration of the output return

difference matrix although this is less important from a

practical viewpoint.
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INPUT - MINIMUM SING. VALUE

.0. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .

0. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .

.. . . . . . . . .. . . . . . . . . .. . . . . . . . .. . . . . . . . . .. . . . . . . .

C)3

ol ORIGINAL SYS.

0. . . . . I. . . . .. . . .. .. . . . . .. . . . . .. .. . . . . . . .. . . .. . .. . . .. .

0.0 5.0 10.0 15.0 20.0 25.0 30.O 3.5.0 40.0 45.0 50.0

FREQ.(RAD/SEC)

Figure V.2 - Improvement in the INPUT-Minimum Singular value
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D. OUTPUT - MINIMUM SINGULAR VALUE

In the Figure V.4 we have plotted the output minimum

singular values that correspond to the run where the input

singular values were improved, as well as the original

values.

As a considerable degradation of the output singular

values was evident, we try, in the last part of this work,

to arrive to a situation where the system could be

reasonable robust in both cases, increasing the output

singular value even with some reduction at the input

situation.

After several runs of the program, using different

combinations of optimization techniques with different

starting points, it was verified that due to the

characteristics of the plant, that increases in the input

singular values resulted in decreases in the output

situation.

In order to obtain some improvement, an effort was made

to modify the system.

The first step was to look at the controllability matrix

of our model, represented by

1.855632D-01 4.948168D+02

2.725664D+13 -2.690449D+13

2.725664D+13 -2.690449D+13

2.861121D+00 -2.822009D+00

2.201811D+01 2.171710D+01
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-6.781791D+00 6.689111D+00

-2.286975D+00 2.255563D+00

9.855433D+00 -9.719614D+00

-1.508382D+01 1.487685D+01

4.905487D-01 -4.264398D-01

As we can verify, all the elements are non zero, this

means that the poles can placed at any desired position; but

a close look at the 2nd and 3th rows indicates very high

order numbers compared to the others. This situation

generates some numerical difficulties in pole placement.

Using engineering judgement, we have to define what kind

of changes have to be made for achieving a more robust

system.

First we try to get a balanced A-matrix by changing

units, i. e., the angles will be in radians instead of

degrees and the pitch angular rate in radians per second

instead of degrees per second. Despite some reduction on the

numbers was not possible to arrive to a satisfactory

solution.

More positive effect was obtained by adding the effect

of the angle-of-attack in the controller (see Figure 11.3).

As the original system has the output singular values

higher than 0.5 for frequencies above 10 rad/sec, we have

kept the original feedback gains and calculated gains to

feedback only the angle-of-attack, pitch rate and commanded

actuator.
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The gains are the following:

F [ 0 0 0 0.037 0.027 0 -0.02 0.049 0.986 1.4041

F 0 0 0 0 0 0 0 0 0 01

The result is presented in Figure V.5, compared with the

original singular values and those from the improvement in

the input case.

The output singular values, compared with the original

was slightly improved for frequencies below 5.0 rad/sec.

Resultant input singular values are plotted in Figure

V.6, and they are lower than those from the improvement in

the input situation but a little higher than the original.

The time response were practically unchanged with

respect to the original model and it is presented in Figure

V.7.

Further analysis is needed to obtain a solution with

high output singular values.
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OUTPUT - MINIMUM SING. VALUE
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.. . . ..0 .. . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . ... . . . . ... .. . . . .

.z ..... ...................... .....................

LEEN
. .... .... .... .... .... .... . ... .. .

DORIGINAL SYS.

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 450 50.0

FREQ.(RAD/SEC)

Figure V.4 Output Singular Value Resulted from the
Improvement in the Input Singular Value
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OUTPUT - MINIMUM SING. VALUE

.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.-

0 . . .. . . . .. . . . . . . . . . . . . . . . . . .. .. . . . .. .. . . .. . . . . .. .. ..

c3 ORIGINAL SYS.
.... ... .. .... ... ...... . ....

OUTPUT-ROB.SYS.

0.0 5.0 10.0 15.0 20.0 2;.0 30.O 35.0 40.0 45.0 50.0

FREQ.(RAD/SEC)

Figure V.5 Output Singular Value
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INPUT - IMINIMUM SING. VALUE

.. .... ..... ..... ..... ..... ..... .... ... .....

z

LEGEND
oORIGINAL SYS.

OUTPUT-ROB.SYS.

0.0 5.0 10.0 15.0 20.0 2;.0 30.0 35.0 40.0 45.0 50.0
FREQ.(RAD/SEC)

Figure V.6 Final Result in the Input Singular Value
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t
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:3UflLIJI1V

Figure V.7 Final Time R-asponse

105



VI. CONCLUSIONS

The sensitivity analysis based in the change in

eigenvalues represents an important role in the design.

As was demonstrated for the studied missile i4' behavior

corresponds to a system insensitive to the variation of the

considered aerodynamic parameters.

The analysis gives a good indication of what parameters

have to be precisely determined.

The robustness analysis also demonstrated how useful the

singular value analysis is as an auxiliary tool for the

designer.

Singuiar value analysis indicates that the system is

robust to input perturbations but is deficient in robustness

to output perturbations.

The physical nature of the problem indicates that the

prime concern should be with respect to the input

perturbations; the output perturbations are of minor concern

but should be kept in mind if unusual conditions should be

encountered by the missile.

On the MIMO design a commomly used method is the Linear

Quadratic analysis where the performance levels are reached

by adjusting weighting terms in the "cost" function, but ths

results of that method, for non-diagonal R matrices, do not

necessarily imply a robLst system. Using the return
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difference matrix we can improve the robustness of the

design.

One advantage of this procedure is that it permits a

high level of interaction between the system and the

designer.

Further problems of a computer nature (i.e., large CPU

time) are encountered with a high number of states. Analysis

must be confined to a small frequency range of low singular

values and the complete system return matrix singular value

are calculated with the determined feedback gains.

One aspect that should be considered in future

development is to improve the cpu time used when handle a

system with a high number of states.
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APPENDIX A

MISSILE DATA

Under this Appendix the missile sizing, mass properties

and aerodynamic parameters are presented as given by Arrow

[Ref.1], including the figures.

The missile is 1/6 scale of the actual circular missile

configuration and is reproduced in Figure A.1. It is tail

controlled using four identical control surfaces located

with +30 dihedral.

A. GEOMETRY AND MASS PROPERTIES

In table VI we have the size and mass properties, with

the respactive values, used for development of the state

equations.

Only the uncoupled pitch channel was considered,

assuming no roll movement.

Table VI

MISSILE GEOMETRY AND MASS PROPERTIES

Weight W 2525 lbs
Length 1 168 in
Diameter d 24 in

2Reference Area for Coeff. S 1T ft2

Moment of Inertia about y I 804 slug-ft 2

yy
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Figure A. 1 Circular Configuration of the Missile
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B. AUTOPILOT/AIRFRAME

Figure A.2 shows the block diagram of the autopilot used

to develop the model of the pitch control channel of the

missile.

The state equations that correspond to the autopilot are

the following:

-150.0 x + 150.0

x = 1.353 xI + x - 1.353 zc

= -6.572 x - 5.0 x + 6.572 zC

X = -44.3316 x - 59.11 x5 6

x= x - 0.1482 x + 0.0395 x

x = -188.4 x + 188.4 x 7
6 18. 6

0

x -0.4608 x - 2.231 x - 0.3406 x + 2.231 x

- 15.095 x - 20.13 x - 0.1430 x + 0.4608 ic

The input for the autopilot is the commanded

acceleration --- nzc"

The values related to the aerodynamic are the following:

C = - 0.06
mix

C m& ° = - 0.08

C N = 0.15

CN p = 0.04
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Dynamic Pressure - q ---------- 1650 lb/ft2

Velocity - V ---------- 325.46 ft/sec
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Figure A.2 Block Diagram of the AutopilotlAirframe
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APPENDIX B

POPLAR PROGRAM~

The computer output where the improvement in the input

singular value was found is listed below.

FIL9, LO?1765 COT At PARK des

MKAS. 0.?0000 060? 7010. 0.40006 7010 STEP. 0.0066

WEIW1? 1. 8.10600011T 2. 6.0069"91011T 11. .0066

540000. 6.60000 11,1000. #.S0@@$ 0j-4..16609 zoo.

.. Te A PLANOT MATRX..

-1S0.0oeoo 0.00006 6.00000 6.00000 .... _0.7803 1.0000 6.10606

..0.0.. ......00.0000.004 9000

6.00 .005000
-6.57206 6.00000 -5.0000906.06006 6.60001 6.0000 6.600060 6.60069

0.00000 6.00000

0.0000 .00

0.006 .000*:co 0.00900 0.00406 "e*0.0 00 6.60006 0.69.0006
049.00000 0.0000

0.00 60066.6040 6.0000 9.60600-6 1.80109 06.3000 0.6000

0.00000 6.000-0.400 .@S$000099104

60 000.0000

?00 a CONTROL 00.11? MATRIX

6.57206 -6.4809

0.00006 6.60006084 8091 0009

0.off6#0 6. .0000 600 969,0606 6 0.006 6.0000 .6 000 .006



'ILE!, LAT31POUT 001 ?Am Foo .

0.00006 6.00006

I.600*$ 1.60004 *.so#*00 Oo 0.00000 0.60 000 4 .60 000 0.606 .00006

.00 e 6G .00000 0. 000 6 0.0000 $.*los 0.600 0 .0066 0.006

a.00 Decal 0 6.00006 6.00069 6.00006 6.06066 *.600400 0.0006

0oee Io 0.0000 ee0.00006 0.6000 6060 60000 0.60000 0.0000
0.00006 0.00006

0.Ocoee0.:: 6.00 000 0.0000 8 0.0006 66006 0.0000 6.06000 0.60000
0.00000 a0.000

..THE OREEFOL 7E00AA PAOC 20 NV

so.0001 0.00440

000000 6.00000

-1 coca$0 -099

-1.00000 .000

-1.00009 ,0.0000

..THE INITIAL. DATA 10..

..THE ORDERED COMF0TED EM0(00000.0(

-1004020 00a

-1.01606 -7.6600s

-1.00 * 4.00074

-0.10013 9.0000%

-.04010 -0.16396 6.09424 0.060 .72 0100 .72 .2

-0.070 -.4040 0.070 0.000 -. 0000 8.00000 5.29077 6.405

0.?:1;? -0.04100 -00.299020 6.#Sao* -4.41300 -4.200o -4.4.060 4.2029%

-6.090 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1.000 -0.00 6060 0040 -. 00 .00 777? -. 20

-7772 .42400 0.17470 0.09600 @.72077 0.00600 0.72071 -0.0
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FILE,~ LA7S.7000 OUT Al FADE 003

0.04700 0.16376 -0.5U403 @51000* -1.31322 00299 -6.113322 -0.00Z99
-0.2%464 0.00000 -6.244 0.00000

-0.01493 -1.00106 -0.01491 1.00136 -0.240 0.00004 -30664 -0.94636

-13560 0.96630 0.49679 *.00040 0.21644 -0.0193? 8.23644 0,01937
0.30394 0.00000 0.20211 0.00000

-033? -0.15018 -0.30237 0.15026 -0.37094 0.00000 -134106 -0.114400
-3.34060 0.64450 0.403 0.00000 9.235s4 -0.02171 0.235s# 8.02171

0.39143 0.00000 0.20399 0.00000

-4.04044 -0.00946 -6.04046 0.00944 -393.30579 6.00000 -1.2696 -1.43904
-1.20494 1.43904 -. 001949 0.00000 3.7234 11.114656 .72234 -9.04000

-140.7614? 6.00000 -1020.24723 0.00000
0.0.000 03 0.00004 -0.0030 0.00040 6.00000 0.67700 0.013?

6.07750 -0.03327 1.32210 0.00000 -9.24S93 -4.03430 -0.240 0.03403
14.00S40 0.00000 104.05924 0.00000

-0.0003 -0.02064 -0.00101 0.020S4 -0.02130 .00004 -1.40479 -0.81014

-0.40679 0,09804 -0.29274 0.00000 -0.64022 1.4806 -0.44022 -3.46466

-Y.31040 0.00000 -34.47534 0.00000

Toe P PEZOOACK MATRX ..

0.20000 0.00000 0.000009 6.00000 8.00000 6.00000 0.00000 0406

0.90415 3.40-40
0.03000 0.00000 0.03000 0.00000 6.00000 0.00000 0.00000 8.000009

0.00000 6.00000

F07*~e7CV MIN ADD IN sV ZN0 ADD 0I4 3 0300 ADD 0I4 3 03IN PROD 000 IN4 SY

0.70300 0.50264 3.2S329 3.20129 1.114110

FRE0 SYADM0 390000 059930 009030 sy00a 09700

0.70000 0.05334 35.347494 *.2322.93 .00000 2.00000

AAA"A 000300 3303s
A A 0 0 S

A A 0 0 3
A000A.4A 0 0 55330

A A 0 0 3

A A 0 0 3

A A 000030 S31351

P0 1 0R RA PIt0 0 R4A0

'DO

A U0 M0A0T 0 0 91006M 5 SYT 3 1

v a Rs 10 1.00

CONTROL0 PARMETERS
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FIL. L-
1

2
76 0  

OUT Al P406 064

20040 I 6 2V 7 ? U ta *

OPTIMIZATION RESULT7S

00A2?2W FUCTION VA4LUM 6.20690C 06

DESIGN VARIABLES

I -0.242060.23 O.50227E-60 0.1000M4.301
2 -0.10000c.es -1.22494E.02 0.20000.0s
2 -0.20030.01 *.2071se-42 *.200236*@

4 9.220005O -1.1695301 6.2200N0.05
5 -0.206040E-93 -1.90499C.01 9.1000401-N

S -6.10000c.eI 0.3164.46 0.I00022.o3
7 .@2200C*03 0.7074SE.0I 6.2000E01

FUN0CTION EVALUATIONS4 23S

... T.9 PT6(ZE CW TEDOUPU 12..t

-359.71711 -19.9660?

-199.02719 190.4.@2

-0.04664 -7.9746 7

-6040 .040

- .0 0 3 1 6.02000:

-0.37024 -0.39756
-0.37434 0.26730
-0.1430S 6.20020

THEORDRE 060((0 130 CTORS

-27.9,02 - '."5"s -.... I2 M'...2 2.724'' 001 S'S3 0.0
-0.623M 0.9663 2921 0620 -. 36 .00 .6 -8.37794
0.462306 0574 -. 07 .02

0.27374 0.00 .774 -. 06 .343 6.00000 9.01006 -0.92321
0.10606 0.63322 14*09 .600 -30011.006 0.30 0.60419

-1.33376 0428-.27 0.40230 -0.6"6 6.06600 -0.92973 0.26020

-06-0. 0.2003 -7.71 .00 4.46 6.000 -0.26670 0.66094

-0.16079 -0.6999 @1466 .06
-6.06026 -6.326 -0.06034 6.24600 -0.30922 0.06006 0.50392 -1.4,3'4
0.5602 0.4121 -2.02260 0.0006 -6.00246 0.60069 9.24S9 6061

6.62400 -0.00213 -0.0064 060
0.000 .000 .606 60921: 1.00S97 0.6000 -6.60022 0.663

-0.62032 -0.6336 6.3743 -6.000 .74 .060 -. 36 .40

-0.0622 -0.404 6.0N7Y600

6 . 2 2 11 ..4 7 0 4 4 3 0 0 0 6 - .1 014 1 .0 0 6 46 - 0 . 3 46 6 0 6 2 4

0.740 .046267 -. 96 .2

-6.461 -0.24252 -0.40652 0.942s6 -0.20060 0.00600 6.22706 .1.64076

*0.746 6.64 0200 0.6 0000I

-0.06605 -0.0002? -0.0460N 0602 -241.64260 41.000 0.1754 -6.64627

0.20704 6.43'.0'60060 -. M7286 0.00600 20.260 24401

26.22491 -24,34%, 270.60354'S :.:06e0
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PILEo LAT3PRO2OI Y2 Al PA4g I"1

0.0000% 6.0001? 4.00000 4602 0.00066 6.0090 -6.00413 0.60486
-4.2061S -4.00436 -4.6%596 6.00006 -9.04:29 0.60000 Z0.OZ64Y -1.42194
-2.0244? 1.4:294 2040.37176 9.80004

-C.072 -9.02700 -0.00472 0.42F55 -9.02-05 0.00906 6.0945S 0.#1611
0.09453 -0.02613 *.29054 0.00000 0.42Z6? 0.0200a 6.092 1.01700

0.290*6 -1.1379t 2S.60340 0.00000

0.03928 -1.14944 8.030?2 -1.69332 -9.4974 0.02309 t.47442 0.04906

0. "023 1.40440
0.00000 6.00000 6.01000 0.00006 0.0000 0.00009 0.00000 0.0000
0.00000 0.00000

P0222.(7CY "IN 420 SV 063ZM ADO IN0 SY 0 MA 0 20 IN 026 KI 000 ADD IN SW

0.70000 1.07320 2.96Z93 0600 0.00023

Paco 3000101 SVAOOO 06020 06020 009901 30960
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